Linear Regression Cost Function & Gradient descent
1. Linear Regression

2. Cost Function
Choose so that is close to for our training examples
| Title | fmt |
|---|---|
| Hypothesis | |
| Parameters | |
| Cost Function | |
| Goal |
3. Simplified Fmt
= 0
hypothesis function cost function

4. Cost function visable

把 x, y 想象成向量,确定的向量,向量再想象为一个确定的数,总之它是一个二次函数,抽象的想一下,会不会理解
- contour plots
- contour figures

5. Gradient descent target

6. Gradient descent visable

Convex function

7. Gradient descent algorithm
$ \alpha $ : learning rate

8. Gradient descent only $ \theta_{1} $




9. Linear Regression Model

9.1 Batch Gradient Descent
Batch : Each step of gradient descent uses all the training examples

Coursera Learning Notes
Checking if Disqus is accessible...