抱歉,您的浏览器无法访问本站

本页面需要浏览器支持(启用)JavaScript


了解详情 >

blaire

👩🏻‍💻星洲小课堂 SinClass

Octave Tutorial, Octave Learning

1. var

不像matlab有图形界面,octave只提供了命令行接口。 要启动octave,只需要在命令行输入octave即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
>> 2 * (3 + 5)
ans = 16
>> 2 ^ (3 + 5)
ans = 256
>> x = 2 * 3
x = 6
>> who
Variables in the current scope:

ans x

>> disp(x)
6
>>

2. constant

1
2
3
4
5
6
7
8
9
10
11
> pi
ans = 3.1416
>> e
ans = 2.7183
>> format long
>> pi
ans = 3.14159265358979
>> format short
>> pi
ans = 3.1416
>>

octave系统定义了圆周率pi和自然指数e这两个常量, octave 可以定义显示结果

1
2
3
4
5
6
7
>> 3/0
warning: division by zero
ans = Inf
>> 0/0
warning: division by zero
ans = NaN
>>

系统定义了Inf和NaN(注意要区分大小写)。Inf(Infinity)表示被零除的结果,NaN(Not a Number)表示零除零的结果。

3. workspace

使用save命令保存当前工作区到文件 work1

1
2
3
4
>> save work1
>> load work1
>> pi
ans = 3.1416

4. semicolon

1
2
3
4
5
octave:32> x = 2 * 3
x = 6
octave:33> x = 2 * 3;
octave:34> disp(x)
6

5. matrix

矩阵使用方括号([])括起来,维度使用分号(;)分割。 同一维度之间的分隔符可以是空格或逗号(,)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
octave:35> x = [ 2 3 5 ]
x =

2 3 5

octave:36> y = [ 2, 3, 5 ]
y =

2 3 5

octave:37> z = [ 2; 3; 5 ]
z =

2
3
5

octave:39> a = [ 1 2; 1, 3; 1 5 ]
a =

1 2
1 3
1 5

使用冒号表达式快速构造连续的向量

1
2
3
4
5
6
7
8
9
octave:43> v = 2:5
v =

2 3 4 5

octave:44> v = 2:0.3:3
v =

2.0000 2.3000 2.6000 2.9000

构造矩阵的函数

linspace(start, end, N) 产生N个均匀分布于start和end之间的向量。 在绘图时用于产生x坐标特别有用。

logspace(start, end, N) 产生N个指数分布于10start和10end之间的向量。 在绘图时用于产生x坐标特别有用。

zeros(M, N)

zeros(N) = zeros(N, N)。

ones(M, N)

ones(N) = ones(N, N)。

rand(M, N) 值位于0~1的随机数的矩阵。

rand(N) = rand(N, N)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
octave:66> x = linspace (3, 4, 5)
x =

Columns 1 through 4:

3.00000000000000 3.25000000000000 3.50000000000000 3.75000000000000

Column 5:

4.00000000000000

octave:67> logspace (1, 2, 6)
ans =

Columns 1 through 4:

10.0000000000000 15.8489319246111 25.1188643150958 39.8107170553497

Columns 5 and 6:

63.0957344480193 100.0000000000000

6. matrix operation

1
2
3
4
A + B
A - B
A * B
A \ B

说明:A\B为矩阵左除,用于求解线性方程Wx=b,其中W为一个nxn的矩阵,b为一个n维的列向量。 求解线性方式示例:

1
2
3
4
5
6
7
8
9
octave:15> W = [1 1 1 1; 1 2 3 4; 3 4 6 2; 2 7 10 5];
octave:16> b = [3; 5; 5; 8];
octave:17> x = W\b
x =

1.0000
3.0000
-2.0000
1.0000

6.1 matrix transpose

1
2
3
4
5
6
7
8
9
10
11
12
13
octave:9> x = rand(3)
x =

0.0052581 0.4446771 0.3970036
0.7844458 0.3317067 0.9633000
0.0577080 0.9015905 0.0344771

octave:10> x'
ans =

0.0052581 0.7844458 0.0577080
0.4446771 0.3317067 0.9015905
0.3970036 0.9633000 0.034477

7. plotting

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
>> t=[0:0.01:0.98];
>> t
t =

Columns 1 through 10:

0.00000 0.01000 0.02000 0.03000 0.04000 0.05000 0.06000 0.07000 0.08000 0.09000

Columns 11 through 20:

0.10000 0.11000 0.12000 0.13000 0.14000 0.15000 0.16000 0.17000 0.18000 0.19000

Columns 21 through 30:

0.20000 0.21000 0.22000 0.23000 0.24000 0.25000 0.26000 0.27000 0.28000 0.29000

Columns 31 through 40:

0.30000 0.31000 0.32000 0.33000 0.34000 0.35000 0.36000 0.37000 0.38000 0.39000

Columns 41 through 50:

0.40000 0.41000 0.42000 0.43000 0.44000 0.45000 0.46000 0.47000 0.48000 0.49000

Columns 51 through 60:

0.50000 0.51000 0.52000 0.53000 0.54000 0.55000 0.56000 0.57000 0.58000 0.59000

Columns 61 through 70:

0.60000 0.61000 0.62000 0.63000 0.64000 0.65000 0.66000 0.67000 0.68000 0.69000

Columns 71 through 80:

0.70000 0.71000 0.72000 0.73000 0.74000 0.75000 0.76000 0.77000 0.78000 0.79000

Columns 81 through 90:

0.80000 0.81000 0.82000 0.83000 0.84000 0.85000 0.86000 0.87000 0.88000 0.89000

Columns 91 through 99:

0.90000 0.91000 0.92000 0.93000 0.94000 0.95000 0.96000 0.97000 0.98000

>> y1=sin(2*pi*4*t);
>> plot(t,y1)
>> y2=cos(2*pi*4*t);
>> plot(t,y2)
>> hold on
>> plot(t,y1)
>> plot(t,y2,'r')
>> xlabel('time')
>> ylabel('value')
>> legend('sin','cos')
>> title('my plot')
>> print -dpng 'myPlot.png'
warning: print.m: fig2dev binary is not available.
Some output formats are not available.
1
2
3
4
5
6
>> figure(2); plot(t, y2)
>> subplot(1,2,1);
>> plot(t,y1)
>> subplot(1,2,2)
>> plot(t,y2)
>> axis([0.5 1 -1 1])

matric

1
2
3
4
5
6
7
8
9
10
11
12
>> clf;
>> A = magic(5)
A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

>> imagesc(A)
>> imagesc(A), colorbar, colormap gray;

matric

1
2
3
4
5
>> imagesc(magic(15)), colorbar, colormap gray;
>> a=1,b=2,c=3
a = 1
b = 2
c = 3

matric

8. ng

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
>> A = [1 2; 3 4; 5 6;]
A =

1 2
3 4
5 6
>>
save hello.mat v; (压缩比例很大)
save hello.txt v -ascii % save as text(ASCII)

>> who
Variables in the current scope:

A

>> whos
Variables in the current scope:

Attr Name Size Bytes Class
==== ==== ==== ===== =====
A 3x2 48 double

Total is 6 elements using 48 bytes

>> clear
>> A(3,2)
ans = 6
>> A(:,2)
ans =

2
4
6

>> A(2,:)
ans =

3 4

>> A
A =

1 2
3 4
5 6

>> A([1 3], :)
ans =

1 2
5 6

>> A(:,2)
ans =

2
4
6

>> A(:,2) = [10; 11; 12]
A =

1 10
3 11
5 12

>> A = [A, [100; 101; 102]];
>> A
A =

1 10 100
3 11 101
5 12 102

>> [100;101;102]
ans =

100
101
102

>> size(A)
ans =

3 3

>> A(:)
ans =

1
3
5
10
11
12
100
101
102

>> A = [1 2; 3 4; 5 6;]
A =

1 2
3 4
5 6

>> B = [11 12; 13 14; 15 16]
B =

11 12
13 14
15 16

>> C = [A B]
C =

1 2 11 12
3 4 13 14
5 6 15 16

>> D = [A;B]
D =

1 2
3 4
5 6
11 12
13 14
15 16

>> size(D)
ans =

6 2

>> [A, B]
ans =

1 2 11 12
3 4 13 14
5 6 15 16

>> [A B]
ans =

1 2 11 12
3 4 13 14
5 6 15 16

>>
>>
>>>> A .* B
ans =

11 24
39 56
75 96

>> A .^ 2
ans =

1 4
9 16
25 36

>> v = [1; 2; 3]
v =

1
2
3

>> 1 ./ v
ans =

1.00000
0.50000
0.33333

>> 1 ./ A
ans =

1.00000 0.50000
0.33333 0.25000
0.20000 0.16667

>> log(v)
ans =

0.00000
0.69315
1.09861

>> exp(v)
ans =

2.7183
7.3891
20.0855

>> abs(v)
ans =

1
2
3

>> abs([-1; -2; -3])
ans =

1
2
3

>> V = v
V =

1
2
3

>> V
V =

1
2
3

>> V
V =

1
2
3

>> -V
ans =

-1
-2
-3

>> V + ones(length(V))
warning: operator +: automatic broadcasting operation applied
ans =

2 2 2
3 3 3
4 4 4

>> length(V)
ans = 3
>> ones(3,1)
ans =

1
1
1

>> V + ones(3, 1)
ans =

2
3
4

>> V + 2
ans =

3
4
5

>> V
V =

1
2
3

>> A
A =

1 2
3 4
5 6

>> A'
ans =

1 3 5
2 4 6

>> a = [1 15 2 0.5]
a =

1.00000 15.00000 2.00000 0.50000

>> val = max(a)
val = 15
>> [val, ind] = max(a)
val = 15
ind = 2
>> max(A)
ans =

5 6

>> A
A =

1 2
3 4
5 6

>> a
a =

1.00000 15.00000 2.00000 0.50000

>> a < 3
ans =

1 0 1 1

>> find(a < 3)
ans =

1 3 4

>> A = magix(3)
error: 'magix' undefined near line 1 column 5
>> A = magic(3)
A =

8 1 6
3 5 7
4 9 2

>> [r, c] = find(A >= 7)
r =

1
3
2

c =

1
2
3

>> A(2,3)
ans = 7
>> sum(a)
ans = 18.500
>> prod(a)
ans = 15
>> floor(a)
ans =

1 15 2 0

>> ceil(a)
ans =

1 15 2 1

>> rand(3)
ans =

0.708800 0.905101 0.837562
0.264139 0.265985 0.671546
0.411435 0.058028 0.454436

>> max(rand(3), rand(3))
ans =

0.87641 0.74541 0.92027
0.61292 0.57756 0.95694
0.26555 0.76822 0.63566

>> A
A =

8 1 6
3 5 7
4 9 2

>> max(A, [], 1)
ans =

8 9 7

>> max(A, [], 2)
ans =

8
7
9

>> max(A)
ans =

8 9 7

>> max(max(A))
ans = 9
>> A(:)
ans =

8
3
4
1
5
9
6
7
2

>> max(A(:))
ans = 9
>>
>>
>> A = magic(9)
A =

47 58 69 80 1 12 23 34 45
57 68 79 9 11 22 33 44 46
67 78 8 10 21 32 43 54 56
77 7 18 20 31 42 53 55 66
6 17 19 30 41 52 63 65 76
16 27 29 40 51 62 64 75 5
26 28 39 50 61 72 74 4 15
36 38 49 60 71 73 3 14 25
37 48 59 70 81 2 13 24 35

>> sum(A,1)
ans =

369 369 369 369 369 369 369 369 369

>> sum(A,2)
ans =

369
369
369
369
369
369
369
369
369

>> eye(9)
ans =

Diagonal Matrix

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

>> A
A =

47 58 69 80 1 12 23 34 45
57 68 79 9 11 22 33 44 46
67 78 8 10 21 32 43 54 56
77 7 18 20 31 42 53 55 66
6 17 19 30 41 52 63 65 76
16 27 29 40 51 62 64 75 5
26 28 39 50 61 72 74 4 15
36 38 49 60 71 73 3 14 25
37 48 59 70 81 2 13 24 35

>> A .* eye(9)
ans =

47 0 0 0 0 0 0 0 0
0 68 0 0 0 0 0 0 0
0 0 8 0 0 0 0 0 0
0 0 0 20 0 0 0 0 0
0 0 0 0 41 0 0 0 0
0 0 0 0 0 62 0 0 0
0 0 0 0 0 0 74 0 0
0 0 0 0 0 0 0 14 0
0 0 0 0 0 0 0 0 35

>> sum(sum(A .* eye(9)))
ans = 369
>> flipud(eye(9))
ans =

Permutation Matrix

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

>> sum(sum(A.*flipud(eye(9))))
ans = 369
>> A
A =

47 58 69 80 1 12 23 34 45
57 68 79 9 11 22 33 44 46
67 78 8 10 21 32 43 54 56
77 7 18 20 31 42 53 55 66
6 17 19 30 41 52 63 65 76
16 27 29 40 51 62 64 75 5
26 28 39 50 61 72 74 4 15
36 38 49 60 71 73 3 14 25
37 48 59 70 81 2 13 24 35

>> A = magic(3)
A =

8 1 6
3 5 7
4 9 2

>> temp = pinv(A)
temp =

0.147222 -0.144444 0.063889
-0.061111 0.022222 0.105556
-0.019444 0.188889 -0.102778

Reference article

  1. coursera week 2 learning notes
  2. 学习一点

Comments