Coursera Week 2 - Octave learning
Octave Tutorial, Octave Learning
1. var
不像matlab有图形界面,octave只提供了命令行接口。 要启动octave,只需要在命令行输入octave即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| >> 2 * (3 + 5) ans = 16 >> 2 ^ (3 + 5) ans = 256 >> x = 2 * 3 x = 6 >> who Variables in the current scope:
ans x
>> disp(x) 6 >>
|
2. constant
1 2 3 4 5 6 7 8 9 10 11
| > pi ans = 3.1416 >> e ans = 2.7183 >> format long >> pi ans = 3.14159265358979 >> format short >> pi ans = 3.1416 >>
|
octave系统定义了圆周率pi和自然指数e这两个常量, octave 可以定义显示结果
1 2 3 4 5 6 7
| >> 3/0 warning: division by zero ans = Inf >> 0/0 warning: division by zero ans = NaN >>
|
系统定义了Inf和NaN(注意要区分大小写)。Inf(Infinity)表示被零除的结果,NaN(Not a Number)表示零除零的结果。
3. workspace
使用save命令保存当前工作区到文件 work1
1 2 3 4
| >> save work1 >> load work1 >> pi ans = 3.1416
|
4. semicolon
1 2 3 4 5
| octave:32> x = 2 * 3 x = 6 octave:33> x = 2 * 3; octave:34> disp(x) 6
|
5. matrix
矩阵使用方括号([])括起来,维度使用分号(;)分割。 同一维度之间的分隔符可以是空格或逗号(,)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| octave:35> x = [ 2 3 5 ] x =
2 3 5
octave:36> y = [ 2, 3, 5 ] y =
2 3 5
octave:37> z = [ 2; 3; 5 ] z =
2 3 5
octave:39> a = [ 1 2; 1, 3; 1 5 ] a =
1 2 1 3 1 5
|
使用冒号表达式快速构造连续的向量
1 2 3 4 5 6 7 8 9
| octave:43> v = 2:5 v =
2 3 4 5 octave:44> v = 2:0.3:3 v =
2.0000 2.3000 2.6000 2.9000
|
构造矩阵的函数
linspace(start, end, N)
产生N个均匀分布于start和end之间的向量。 在绘图时用于产生x坐标特别有用。
logspace(start, end, N)
产生N个指数分布于10start和10end之间的向量。 在绘图时用于产生x坐标特别有用。
zeros(M, N)
zeros(N) = zeros(N, N)。
ones(M, N)
ones(N) = ones(N, N)。
rand(M, N) 值位于0~1的随机数的矩阵。
rand(N) = rand(N, N)。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
| octave:66> x = linspace (3, 4, 5) x =
Columns 1 through 4:
3.00000000000000 3.25000000000000 3.50000000000000 3.75000000000000
Column 5:
4.00000000000000
octave:67> logspace (1, 2, 6) ans =
Columns 1 through 4:
10.0000000000000 15.8489319246111 25.1188643150958 39.8107170553497
Columns 5 and 6:
63.0957344480193 100.0000000000000
|
6. matrix operation
说明:A\B为矩阵左除,用于求解线性方程Wx=b,其中W为一个nxn的矩阵,b为一个n维的列向量。 求解线性方式示例:
1 2 3 4 5 6 7 8 9
| octave:15> W = [1 1 1 1; 1 2 3 4; 3 4 6 2; 2 7 10 5]; octave:16> b = [3; 5; 5; 8]; octave:17> x = W\b x =
1.0000 3.0000 -2.0000 1.0000
|
6.1 matrix transpose
1 2 3 4 5 6 7 8 9 10 11 12 13
| octave:9> x = rand(3) x =
0.0052581 0.4446771 0.3970036 0.7844458 0.3317067 0.9633000 0.0577080 0.9015905 0.0344771
octave:10> x' ans =
0.0052581 0.7844458 0.0577080 0.4446771 0.3317067 0.9015905 0.3970036 0.9633000 0.034477
|
7. plotting
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
| >> t=[0:0.01:0.98]; >> t t =
Columns 1 through 10:
0.00000 0.01000 0.02000 0.03000 0.04000 0.05000 0.06000 0.07000 0.08000 0.09000
Columns 11 through 20:
0.10000 0.11000 0.12000 0.13000 0.14000 0.15000 0.16000 0.17000 0.18000 0.19000
Columns 21 through 30:
0.20000 0.21000 0.22000 0.23000 0.24000 0.25000 0.26000 0.27000 0.28000 0.29000
Columns 31 through 40:
0.30000 0.31000 0.32000 0.33000 0.34000 0.35000 0.36000 0.37000 0.38000 0.39000
Columns 41 through 50:
0.40000 0.41000 0.42000 0.43000 0.44000 0.45000 0.46000 0.47000 0.48000 0.49000
Columns 51 through 60:
0.50000 0.51000 0.52000 0.53000 0.54000 0.55000 0.56000 0.57000 0.58000 0.59000
Columns 61 through 70:
0.60000 0.61000 0.62000 0.63000 0.64000 0.65000 0.66000 0.67000 0.68000 0.69000
Columns 71 through 80:
0.70000 0.71000 0.72000 0.73000 0.74000 0.75000 0.76000 0.77000 0.78000 0.79000
Columns 81 through 90:
0.80000 0.81000 0.82000 0.83000 0.84000 0.85000 0.86000 0.87000 0.88000 0.89000
Columns 91 through 99:
0.90000 0.91000 0.92000 0.93000 0.94000 0.95000 0.96000 0.97000 0.98000
>> y1=sin(2*pi*4*t); >> plot(t,y1) >> y2=cos(2*pi*4*t); >> plot(t,y2) >> hold on >> plot(t,y1) >> plot(t,y2,'r') >> xlabel('time') >> ylabel('value') >> legend('sin','cos') >> title('my plot') >> print -dpng 'myPlot.png' warning: print.m: fig2dev binary is not available. Some output formats are not available.
|
1 2 3 4 5 6
| >> figure(2); plot(t, y2) >> subplot(1,2,1); >> plot(t,y1) >> subplot(1,2,2) >> plot(t,y2) >> axis([0.5 1 -1 1])
|
1 2 3 4 5 6 7 8 9 10 11 12
| >> clf; >> A = magic(5) A =
17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9
>> imagesc(A) >> imagesc(A), colorbar, colormap gray;
|
1 2 3 4 5
| >> imagesc(magic(15)), colorbar, colormap gray; >> a=1,b=2,c=3 a = 1 b = 2 c = 3
|
8. ng
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
| >> A = [1 2; 3 4; 5 6;] A =
1 2 3 4 5 6 >> save hello.mat v; (压缩比例很大) save hello.txt v -ascii
>> who Variables in the current scope:
A
>> whos Variables in the current scope:
Attr Name Size Bytes Class ==== ==== ==== ===== ===== A 3x2 48 double
Total is 6 elements using 48 bytes
>> clear >> A(3,2) ans = 6 >> A(:,2) ans =
2 4 6
>> A(2,:) ans =
3 4
>> A A =
1 2 3 4 5 6
>> A([1 3], :) ans =
1 2 5 6
>> A(:,2) ans =
2 4 6
>> A(:,2) = [10; 11; 12] A =
1 10 3 11 5 12
>> A = [A, [100; 101; 102]]; >> A A =
1 10 100 3 11 101 5 12 102
>> [100;101;102] ans =
100 101 102
>> size(A) ans =
3 3
>> A(:) ans =
1 3 5 10 11 12 100 101 102
>> A = [1 2; 3 4; 5 6;] A =
1 2 3 4 5 6
>> B = [11 12; 13 14; 15 16] B =
11 12 13 14 15 16
>> C = [A B] C =
1 2 11 12 3 4 13 14 5 6 15 16
>> D = [A;B] D =
1 2 3 4 5 6 11 12 13 14 15 16
>> size(D) ans =
6 2
>> [A, B] ans =
1 2 11 12 3 4 13 14 5 6 15 16
>> [A B] ans =
1 2 11 12 3 4 13 14 5 6 15 16
>> >> >>>> A .* B ans =
11 24 39 56 75 96
>> A .^ 2 ans =
1 4 9 16 25 36
>> v = [1; 2; 3] v =
1 2 3
>> 1 ./ v ans =
1.00000 0.50000 0.33333
>> 1 ./ A ans =
1.00000 0.50000 0.33333 0.25000 0.20000 0.16667
>> log(v) ans =
0.00000 0.69315 1.09861
>> exp(v) ans =
2.7183 7.3891 20.0855
>> abs(v) ans =
1 2 3
>> abs([-1; -2; -3]) ans =
1 2 3
>> V = v V =
1 2 3
>> V V =
1 2 3
>> V V =
1 2 3
>> -V ans =
-1 -2 -3
>> V + ones(length(V)) warning: operator +: automatic broadcasting operation applied ans =
2 2 2 3 3 3 4 4 4
>> length(V) ans = 3 >> ones(3,1) ans =
1 1 1
>> V + ones(3, 1) ans =
2 3 4
>> V + 2 ans =
3 4 5
>> V V =
1 2 3
>> A A =
1 2 3 4 5 6
>> A' ans =
1 3 5 2 4 6
>> a = [1 15 2 0.5] a =
1.00000 15.00000 2.00000 0.50000
>> val = max(a) val = 15 >> [val, ind] = max(a) val = 15 ind = 2 >> max(A) ans =
5 6
>> A A =
1 2 3 4 5 6
>> a a =
1.00000 15.00000 2.00000 0.50000
>> a < 3 ans =
1 0 1 1
>> find(a < 3) ans =
1 3 4
>> A = magix(3) error: 'magix' undefined near line 1 column 5 >> A = magic(3) A =
8 1 6 3 5 7 4 9 2
>> [r, c] = find(A >= 7) r =
1 3 2
c =
1 2 3
>> A(2,3) ans = 7 >> sum(a) ans = 18.500 >> prod(a) ans = 15 >> floor(a) ans =
1 15 2 0
>> ceil(a) ans =
1 15 2 1
>> rand(3) ans =
0.708800 0.905101 0.837562 0.264139 0.265985 0.671546 0.411435 0.058028 0.454436
>> max(rand(3), rand(3)) ans =
0.87641 0.74541 0.92027 0.61292 0.57756 0.95694 0.26555 0.76822 0.63566
>> A A =
8 1 6 3 5 7 4 9 2
>> max(A, [], 1) ans =
8 9 7
>> max(A, [], 2) ans =
8 7 9
>> max(A) ans =
8 9 7
>> max(max(A)) ans = 9 >> A(:) ans =
8 3 4 1 5 9 6 7 2
>> max(A(:)) ans = 9 >> >> >> A = magic(9) A =
47 58 69 80 1 12 23 34 45 57 68 79 9 11 22 33 44 46 67 78 8 10 21 32 43 54 56 77 7 18 20 31 42 53 55 66 6 17 19 30 41 52 63 65 76 16 27 29 40 51 62 64 75 5 26 28 39 50 61 72 74 4 15 36 38 49 60 71 73 3 14 25 37 48 59 70 81 2 13 24 35
>> sum(A,1) ans =
369 369 369 369 369 369 369 369 369
>> sum(A,2) ans =
369 369 369 369 369 369 369 369 369
>> eye(9) ans =
Diagonal Matrix
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
>> A A =
47 58 69 80 1 12 23 34 45 57 68 79 9 11 22 33 44 46 67 78 8 10 21 32 43 54 56 77 7 18 20 31 42 53 55 66 6 17 19 30 41 52 63 65 76 16 27 29 40 51 62 64 75 5 26 28 39 50 61 72 74 4 15 36 38 49 60 71 73 3 14 25 37 48 59 70 81 2 13 24 35
>> A .* eye(9) ans =
47 0 0 0 0 0 0 0 0 0 68 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 74 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 35
>> sum(sum(A .* eye(9))) ans = 369 >> flipud(eye(9)) ans =
Permutation Matrix
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
>> sum(sum(A.*flipud(eye(9)))) ans = 369 >> A A =
47 58 69 80 1 12 23 34 45 57 68 79 9 11 22 33 44 46 67 78 8 10 21 32 43 54 56 77 7 18 20 31 42 53 55 66 6 17 19 30 41 52 63 65 76 16 27 29 40 51 62 64 75 5 26 28 39 50 61 72 74 4 15 36 38 49 60 71 73 3 14 25 37 48 59 70 81 2 13 24 35
>> A = magic(3) A =
8 1 6 3 5 7 4 9 2
>> temp = pinv(A) temp =
0.147222 -0.144444 0.063889 -0.061111 0.022222 0.105556 -0.019444 0.188889 -0.102778
|
Reference article
- coursera week 2 learning notes
- 学习一点
Checking if Disqus is accessible...