抱歉,您的浏览器无法访问本站

本页面需要浏览器支持(启用)JavaScript


了解详情 >

blaire

👩🏻‍💻星洲小课堂 SinClass

Sklearn 中的 learning curve 可以很直观的看出我们的 model 学习的进度, 对比发现有没有 overfitting 的问题. 然后我们可以对我们的 model 进行调整, 克服 overfitting 的问题.

Learning curve 检视过拟合

加载对应模块:

1
2
3
4
5
from sklearn.learning_curve import learning_curve #学习曲线模块
from sklearn.datasets import load_digits #digits数据集
from sklearn.svm import SVC #Support Vector Classifier
import matplotlib.pyplot as plt #可视化模块
import numpy as np

加载digits数据集,其包含的是手写体的数字,从0到9。
数据集总共有1797个样本,每个样本由64个特征组成, 分别为其手写体对应的8×8像素表示,每个特征取值0~16。

1
2
3
4
5
digits = load_digits()
X = digits.data
y = digits.target

#print(len(X[0]))

观察样本由小到大的学习曲线变化, 采用K折交叉验证 cv=10, 选择平均方差检视模型效能 scoring='mean_squared_error', 样本由小到大分成5轮检视学习曲线(10%, 25%, 50%, 75%, 100%):

1
2
3
4
5
6
7
train_sizes, train_loss, test_loss = learning_curve(
SVC(gamma=0.001), X, y, cv=10, scoring='mean_squared_error',
train_sizes=[0.1, 0.25, 0.5, 0.75, 1])

#平均每一轮所得到的平均方差(共5轮,分别为样本10%、25%、50%、75%、100%)
train_loss_mean = -np.mean(train_loss, axis=1)
test_loss_mean = -np.mean(test_loss, axis=1)

可视化图形:

1
2
3
4
5
6
7
8
9
plt.plot(train_sizes, train_loss_mean, 'o-', color="r",
label="Training")
plt.plot(train_sizes, test_loss_mean, 'o-', color="g",
label="Cross-validation")

plt.xlabel("Training examples")
plt.ylabel("Loss")
plt.legend(loc="best")
plt.show()
image

Reference

Comments