抱歉,您的浏览器无法访问本站

本页面需要浏览器支持(启用)JavaScript


了解详情 >

blaire

👩🏻‍💻星洲小课堂 SinClass

RNN, Recurrent Neural Networks 进行分类(classification),采用 MNIST 数据集,用 SimpleRNN 层。

LSTM in Keras
LSTM in Keras
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np
np.random.seed(1337) # for reproducibility

from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import SimpleRNN, Activation, Dense
from keras.optimizers import Adam

TIME_STEPS = 28 # same as the height of the image

INPUT_SIZE = 28 # same as the width of the image

BATCH_SIZE = 50
BATCH_INDEX = 0

OUTPUT_SIZE = 10

CELL_SIZE = 50

LR = 0.001

1. data pre-processing

MNIST里面的图像分辨率是28×28,为用RNN,将图像理解为序列化数据。

每一行作为一个输入单元,所以输入数据大小 INPUT_SIZE = 28

先是第1行输入,再是第2行,…,第28行输入, 这就是一张图片也就是一个序列,所以步长 TIME_STEPS = 28

训练数据要进行 normalize,因为原始数据是 8bit 灰度图像, 所以需要除以 255。

1
2
3
4
5
6
7
8
9
10
# download the mnist to the path '~/.keras/datasets/' if it is the first time to be called
# X shape (60,000 28x28), y shape (10,000, )
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# data pre-processing
X_train = X_train.reshape(-1, 28, 28) / 255. # normalize
X_test = X_test.reshape(-1, 28, 28) / 255. # normalize

y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)
1
2
3
4
5
print(X_train.shape)
print(y_train.shape)

(60000, 28, 28)
(60000, 10)

2. build model

1
2
3
4
5
6
7
8
9
10
11
# build RNN model
model = Sequential()

# RNN cell
model.add(SimpleRNN(
# for batch_input_shape, if using tensorflow as the backend, we have to put None for the batch_size.
# Otherwise, model.evaluate() will get error.
batch_input_shape=(None, TIME_STEPS, INPUT_SIZE), # Or: input_dim=INPUT_SIZE, input_length=TIME_STEPS,
output_dim=CELL_SIZE,
unroll=True,
))
1
2
3
4
5
6
7
8
9
10
11
# output layer
model.add(Dense(OUTPUT_SIZE))
model.add(Activation('softmax'))

# optimizer
adam = Adam(LR)
model.compile(optimizer=adam,
loss='categorical_crossentropy',
metrics=['accuracy'])

model.summary()
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
simple_rnn_1 (SimpleRNN)     (None, 50)                3950      
_________________________________________________________________
dense_1 (Dense)              (None, 10)                510       
_________________________________________________________________
activation_1 (Activation)    (None, 10)                0         
_________________________________________________________________
dense_2 (Dense)              (None, 10)                110       
_________________________________________________________________
activation_2 (Activation)    (None, 10)                0         
=================================================================
Total params: 4,570
Trainable params: 4,570
Non-trainable params: 0
_________________________________________________________________

设置优化方法,loss函数 和 metrics 方法之后就可以开始训练了。 每次训练的时候并不是取所有的数据,只是取 BATCH_SIZE个序列,或者称为 BATCH_SIZE 张图片,这样可以大大降低运算时间,提高训练效率。

3. training & evaluate

输出 test 上的 lossaccuracy 结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# training
for step in range(4001):
# data shape = (batch_num, steps, inputs/outputs)

X_batch = X_train[BATCH_INDEX: BATCH_INDEX+BATCH_SIZE, :, :]
Y_batch = y_train[BATCH_INDEX: BATCH_INDEX+BATCH_SIZE, :]

cost = model.train_on_batch(X_batch, Y_batch)

BATCH_INDEX += BATCH_SIZE
BATCH_INDEX = 0 if BATCH_INDEX >= X_train.shape[0] else BATCH_INDEX

if step % 500 == 0:
cost, accuracy = model.evaluate(X_test, y_test, batch_size=y_test.shape[0], verbose=False)
print('test cost: ', cost, 'test accuracy: ', accuracy)
test cost:  2.311124086380005 test accuracy:  0.0957999974489212
test cost:  1.6327736377716064 test accuracy:  0.5228999853134155
test cost:  1.3161704540252686 test accuracy:  0.559499979019165
test cost:  1.1487971544265747 test accuracy:  0.5494999885559082
test cost:  1.0471760034561157 test accuracy:  0.5713000297546387
test cost:  1.0110148191452026 test accuracy:  0.5630999803543091
test cost:  0.9520753622055054 test accuracy:  0.5877000093460083
test cost:  0.8796814680099487 test accuracy:  0.604200005531311
test cost:  0.858435869216919 test accuracy:  0.6585999727249146

Reference

Comments